Brain damage detection using machine learning approach
نویسندگان
چکیده
The diagnosis of brain tumours has sparked attention in several research fields recently. Since the human body anatomical structure by nature, finding is an extremely laborious and time-consuming task. Cells develop quickly uncontrollably, which causes tumours. It may cause death if not addressed beginning stages. Although there have been many substantial efforts encouraging results this field, precise segmentation classification remain difficult tasks. Because variability tumour location, shape, size, detecting a significant difficulty. One most crucial problems with artificial intelligence systems medical diagnostics using image processing machine learning. Magnetic resonance imaging (MRI) one technologies frequently used to find (MRI). provides details that are employed process carefully scanning internal organisation body. variety intricacy make it classify MR images. Sigma sifting, versatile limit, detection locale portion cycles recommended technique for cancer pictures.
منابع مشابه
SMS Spam Detection using Machine Learning Approach
Over recent years, as the popularity of mobile phone devices has increased, Short Message Service (SMS) has grown into a multi-billion dollars industry. At the same time, reduction in the cost of messaging services has resulted in growth in unsolicited commercial advertisements (spams) being sent to mobile phones. In parts of Asia, up to 30% of text messages were spam in 2012. Lack of real data...
متن کاملAutomated Structural Damage Detection Using One-Class Machine Learning
Data driven SHM methodologies take raw signals obtained from sensor networks, and process them to obtain features representative of the condition of the structure. New measurements are then compared with baselines to detect damage. Because damage-sensitive features also exhibit variation due to environmental and operational changes, these comparisons are not always straightforward and an automa...
متن کاملApplication Layer DDOS Attack Detection Using Hybrid Machine Learning Approach
Application Layer Distributed Denial of Service (App-DDoS) attack has become a major threat to web security. Attack detection is difficult as they mimic genuine user request. This paper proposes a clustering based correlation approach for detecting application layer DDoS attack on HTTP protocol. Proposed approach has two main modules ----Flow monitoring module and User behavior monitoring modul...
متن کاملDebt Collection Industry: Machine Learning Approach
Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...
متن کاملMachine Learning Approach for Botnet Detection
BotNet is a type of malware that has posed serious threats to Internet community and has been a common weapon for committing cybercrimes such as spam generation, stealing sensitive information, click fraud and DDOS attacks. In this document, we propose an approach for BotNet detection at large scale where network traffic is monitored at a central core in the Internet (say a Tier-1 ISP) so that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Health Sciences (IJHS)
سال: 2022
ISSN: ['2550-6978', '2550-696X']
DOI: https://doi.org/10.53730/ijhs.v6ns8.13317